
Week 11 - Wednesday



 What did we talk about last time?
 Reductions via gadgets
 Efficient certification







 Ten people are marooned on a deserted island
 They gather many coconuts and put them all in a community pile
 They are so tired that they decide to divide them into ten equal piles the next morning
 One castaway wakes up hungry and decides to take his share early
 After dividing up the coconuts, he finds he is one coconut short of ten equal piles
 He notices a monkey holding one coconut
 He tries to take the monkey's coconut so that the total is evenly divisible by 10
 However, when he tries to take it, the monkey hits him on the head with it, killing him
 Later, another castaway wakes up hungry and also decides to take his share early
 On the way to the coconuts he finds the body of the first castaway and realizes that he is now be 

entitled to 1/9 of the total pile
 After dividing them up into nine piles he is again one coconut short of an even division and tries to 

take the monkey's (slightly) bloody coconut
 Again, the monkey hits the second man on the head and kills him
 Each of the remaining castaways goes through the same process, until the 10th person to wake up 

realizes that the entire pile for himself
 What is the smallest number of coconuts in the original pile (ignoring the monkey's)?







 While trying to figure out if P = NP, computer scientists have 
considered the hardest problems in NP
 What are those?

 A hardest problem X in NP has the following properties:
 X ∈NP
 For all Y ∈NP, Y ≤P X

 In other words, it’s a problem in NP that we can reduce all other 
problems in NP to

 The hardest problems in any class are its "complete" problems
 Thus, we call the hardest problems in NP the NP-complete

problems



 Claim: Suppose X is an NP-complete problem. X is solvable in 
polynomial time if and only if P = NP.

 Proof:
 If P = NP, then X can be solved in polynomial time, since X ∈NP.
 Conversely, suppose that X can be solved in polynomial time.  For all 

other problems Y ∈NP, Y ≤P X.  Thus, all problems Y can be solved in 
polynomial time and NP⊆ P.  Since we already know that P⊆NP, it 
would be the case that P = NP.



 It might seem strange that there's a layer of problems that are 
all the "hardest" in NP

 Wouldn't it be possible for there to be lots of problems in NP
that can't be reduced to each other?

 Thus, we could imagine lots of incomparable problems 
floating around, none of which are clearly harder than the 
others

 Or, there could be infinite problems in NP, with each one 
strictly harder than the previous!



 We want a problem that builds intuition about how we might 
be able to encode any problem in NP

 Consider a circuit
 A labeled, directed, acyclic graph with sources (no incoming edges) 

that are 0, 1, or the name of a variable
 Every other node corresponds to operators ∧ (AND), ∨ (OR), and ∼

(NOT)
 A single node with no outgoing edges is the output



 The circuit satisfiability problem takes such a circuit as input 
and asks if there is an assignment of values to inputs that 
causes the output to be 1
 If there is, the circuit is satisfiable
 A satisfying assignment is one that results in this output of 1

 Circuit satisfiability is NP-complete because we can reduce 
any problem in NP to it



 Any algorithm that takes a fixed number n of bits as input and 
produces a "yes" or "no" answer can be represented by this 
kind of circuit

 The circuit is the same as an algorithm because its output is 1 
on precisely the inputs for which the  algorithm outputs "yes"

 If the algorithm takes a number of steps that is polynomial in 
n, the circuit must have polynomial size

 The Cook-Levin theorem goes into careful detail about how to 
construct such a circuit from an algorithm



 Proof:
 3-SAT is in NP since we can verify in polynomial time that a truth 

assignment satisfies a given set of clauses.
 By reducing circuit satisfiability to 3-SAT, we will thus prove that 3-

SAT is NP-complete.
1. Turn any circuit into an equivalent instance of SAT with at most 3 

variables per clause
2. Turn any instance of SAT where each clause has at most 3 variables 

into an equivalent instance with exactly 3 variables



 Make variable xv for each node v of K to hold the truth value for 
that node
 If v is a NOT and its entering edge comes from u, then we need 𝑥𝑥𝑣𝑣 = 𝑥𝑥𝑢𝑢, 

for that, we add clauses (𝑥𝑥𝑣𝑣∨ 𝑥𝑥𝑢𝑢) and (𝑥𝑥𝑣𝑣 ∨ 𝑥𝑥𝑢𝑢)
 If v is an OR and its entering edges come from u and w, we need  𝑥𝑥𝑣𝑣 =
𝑥𝑥𝑢𝑢 ∨ 𝑥𝑥𝑤𝑤, for that we add clauses (𝑥𝑥𝑣𝑣∨ 𝑥𝑥𝑢𝑢), (𝑥𝑥𝑣𝑣∨ 𝑥𝑥𝑤𝑤), and (𝑥𝑥𝑣𝑣 ∨ 𝑥𝑥𝑢𝑢 ∨ 𝑥𝑥𝑤𝑤)

 If v is an AND and its entering edges come from u and w, we need  𝑥𝑥𝑣𝑣 =
𝑥𝑥𝑢𝑢 ∧ 𝑥𝑥𝑤𝑤, for that we add clauses (𝑥𝑥𝑣𝑣 ∨ 𝑥𝑥𝑢𝑢), (𝑥𝑥𝑣𝑣 ∨ 𝑥𝑥𝑤𝑤), and (

)
𝑥𝑥𝑣𝑣 ∨ 𝑥𝑥𝑢𝑢 ∨

𝑥𝑥𝑤𝑤
 If v is a 1 or a 0, we set it to the clause 𝑥𝑥𝑣𝑣 or 𝑥𝑥𝑣𝑣, respectively
 If v is the output node, we add the clause 𝑥𝑥𝑣𝑣 to force it to 1



 3-SAT has exactly three variables for each clause, but some of our 
clauses have one or two variables

 Create four new variables: 𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, 𝑧𝑧4
 Create four clauses for each: (�𝑧𝑧1 ∨ 𝑧𝑧3 ∨ 𝑧𝑧4), (�𝑧𝑧1 ∨ �𝑧𝑧3 ∨ 𝑧𝑧4), (�𝑧𝑧1 ∨
𝑧𝑧3 ∨ �𝑧𝑧4), and (�𝑧𝑧1 ∨ �𝑧𝑧3 ∨ �𝑧𝑧4)

 These clauses force 𝑧𝑧1 = 𝑧𝑧2 = 0
 Then, for two-term clause, we OR 𝑧𝑧1 with it, and for any single 

term clause we OR 𝑧𝑧1 ∨ 𝑧𝑧2 with it
 This new formula is satisfiable if and only if the original circuit 

was, and we were able to construct it in polynomial time.
 Thus, circuit SAT ≤P 3-SAT, and 3-SAT is NP-complete.
∎



 Earlier, we showed:
 3-SAT ≤P independent set ≤P vertex cover ≤P set cover

 By the transitivity of polynomial-time reduction, circuit SAT is 
reducible to all of these problems

 Thus, all of these problems are NP-complete



 Given a problem X that might be NP-complete
1. Prove that X ∈NP
2. Choose a problem Y that is known to be NP-complete
3. Prove that Y ≤P X
 Specifically, consider an arbitrary instance sY of Y and show how to 

construct in polynomial time an instance sX of X such that:
a. If sY is a "yes" instance of Y, then sX is a "yes" instance of X
b. If sX is a "yes" instance of X, then sY is a "yes" instance of Y







 The weighted interval scheduling problem extends interval 
scheduling by attaching a weight (usually a real number) to each 
request

 Now the goal is not to maximize the number of requests served 
but the total weight

 Our greedy approach is worthless, since some high value requests 
might be tossed out

 We could try all possible subsets of requests, but there are 
exponential of those

 Dynamic programming will allow us to save parts of optimal 
answers and combine them efficiently



 We have n requests labeled 1, 2,…, n
 Request i has a start time si and a finish time fi
 Request i has a value vi
 Two intervals are compatible if they don't overlap



 Let's go back to our intuition from the unweighted problem
 Imagine that the requests are sorted by finish time so that f1 ≤ 

f2 ≤ … ≤ fn
 We say that request i comes before request j if i < j, giving a 

natural left-to-right order
 For any request j, let p(j) be the largest index i < j such that 

request i ends before j begins
 If there is no such request, then p(j) = 0
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 Iterative-Compute-Opt
 M[0] = 0
 For j = 1 up to n
▪ M[j] = max(vj + M[p(j)], M[j – 1])

 Algorithm is O(n)



 Find-Solution(j, M)
 If j = 0 then
▪ Output nothing

 Else if vj + M[p(j)] ≥ M[j – 1] then
▪ Output j together with the result of Find-Solution(p(j))

 Else
▪ Output the result of Find-Solution(j – 1)

 Algorithm is O(n)



 The key element that separates dynamic programming from 
divide-and-conquer is that you have to keep the answers to 
subproblems around

 It's not simply a one-and-done situation
 Based on which intervals overlap with which other intervals, 

it's hard to predict when you'll need an earlier M[j] value
 Thus, dynamic programming can often give us polynomial 

algorithms but with linear (and sometimes even larger) space 
requirements



 Weighted interval scheduling follows a set of informal guidelines 
that are essentially universal in dynamic programming solutions:
1. There are only a polynomial number of subproblems
2. The solution to the original problem can easily be computed from (or is 

one of) the solutions to the subproblems
3. There is a natural ordering of subproblems from "smallest" to "largest"
4. There is an easy-to-compute recurrence that lets us compute the 

solution to a subproblem from the solutions of smaller subproblems



 Let's say that we have a series of n jobs that we can run on a 
single machine

 Each job i takes time wi
 We must finish all jobs before time W
 We want to keep the machine as busy as possible, working on 

jobs until as close to W as we can



 If job n is not in the optimal set, OPT(n, W) = OPT(n – 1, W)
 If job n is in the optimal set, OPT(n, W) = wn + OPT(n – 1, W –

wn)
 We can make the full recurrence for all possible weight values:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))



 Create 2D array M[0…n][0…W]
 For w from 1 to W
 Initialize M[0][w] = 0

 For i from 1 to n
 For w from 0 to W
▪ If w < wi, then 
▪OPT(i, w) = OPT(i – 1, w)

▪ Else
▪OPT(i, w) = max(OPT(i – 1, w), wi + OPT(i – 1, w – wi))

 Return M[n][W]



 We're building a big 2D array
 Its  size is nW
 n is the number of items
 W is the maximum weight
 Actually, it's got one more row and one more column, just to make 

things easier
 The book makes this array with row 0 at the  bottom
 I've never seen anyone else do that
 I'm going to put row 0 at the  top



0 0 0 0 0 0 0 0 0 0 0 0 0

1 0

2 0

0

0

0

i – 1 0

i 0

0

0

0

n 0

0 1 2 w- wi w W



 The algorithm has a simple nested loop
 The outer loop runs n + 1 times
 The inner loop runs W + 1 times

 The total running time is O(nW)
 The space needed is also O(nW)
 Note that this time is not polynomial in terms of n
 It's polynomial in n and W, but W is the maximum weight
 Which could be huge!

 We call running times like this pseudo-polynomial
 Things are fine if W is similar to n, but it could be huge!



 Weights: 1, 4, 8, 2, 10
 Maximum: 15
 Create the table to find all of the optimal values that include 

items 1, 2,…, i for every possible weight w up to 15



i wi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1

2 8

3 4

4 2

5 10



 The knapsack problem is a classic problem that extends 
subset sum a little

 As before, there is a maximum capacity W and each item has 
a weight wi

 Each item also has a value vi
 The goal is to maximize the value of objects collected without 

exceeding the capacity
 …like Indiana Jones trying to put the most valuable objects 

from a tomb into his limited-capacity knapsack



 The knapsack problem is really the same problem, except that 
we are concerned with maximum value instead of maximum 
weight

 We need only to update the recurrence to keep the maximum 
value:
 If w < wi, then OPT(i, w) = OPT(i – 1, w)
 Otherwise, OPT(i, w) = max(OPT(i – 1, w), vi + OPT(i – 1, w – wi))



 Items (wi, vi):
 (1, 15)
 (5, 10)
 (3, 9)
 (4, 5)

 Maximum weight: 8
 Create the table to find all of the optimal values that include 

items 1, 2,…, i for every possible weight w up to 8



i wi vi 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0 0 0

1 1 15 0

2 5 10 0

3 3 9 0

4 4 5 0



 An alignment is a list of matches between characters in strings 
X and Y that doesn't cross

 Consider:
 stop-
 -tops

 This alignment is (2,1), (3,2), (4,3)



 Some optimal alignment will have the lowest cost
 Cost:
 Gap penalty δ > 0, for every gap
 Mismatch cost αpq for aligning p with q
▪ αpp is presumably 0 but does not have to be

 Total cost is the sum of the gap penalties and mismatch costs



 Let OPT(i, j) be the minimum cost of an alignment of the first i
characters in X to the first j characters in Y

 In case 1, we would have to pay a matching cost of matching 
the character at i to j

 In cases 2 and 3, you will pay a gap penalty

OPT 𝑖𝑖, 𝑗𝑗 = min�
𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 + OPT 𝑖𝑖 − 1, 𝑗𝑗 − 1

𝛿𝛿 + OPT 𝑖𝑖 − 1, 𝑗𝑗
𝛿𝛿 + OPT 𝑖𝑖, 𝑗𝑗 − 1



 We do our  usual thing
 Build up a table of values with m + 1 rows and n + 1 columns
 In row o, column i has value iδ to build up strings from the 

empty string
 In column o, row i has value iδ to build up strings from the 

empty string
 The other entries (i,j) can be computed from (i -1, j – 1), (i – 1, 

j), (i, j – 1)



 Create array A[0...m][0...n]
 For i from 0 to m
 Set A[i][0]= iδ

 For j from 0 to n
 Set A[0][ j]= jδ

 For i from 1 to m
 For j from 1 to n

▪ Set A[i][j]= min(𝛼𝛼𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗+A[i-1][j-1], δ + A[i-1][j],

δ + A[i][j- 1])
 Return A[m][n]
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m mδ

0 1 2 … j - 1 j … n



 Find the minimum cost to  align:
 "garbage"
 "ravaged"

 The cost of an insertion (or deletion) δ is 1
 The cost of replacing any letter with another letter is 1
 The cost of "replacing" any letter with itself is 0



g a r b a g e

0 1 2 3 4 5 6 7

r 1

a 2

v 3

a 4

g 5

e 6

d 7





 A flow network is a weighted, directed graph with positive 
edge weights
 Think of the weights as capacities, representing the maximum units 

that can flow across an edge
 It has a source s (where everything comes from) 
 And a sink t (where everything goes to)

 Some books refer to this kind of flow network specifically as 
an st-flow network



 A common flow problem is to find the maximum flow
 A maximum flow is a flow such that the amount leaving s and 

the amount going into t is as large as possible
 In other words:
 The maximum amount of flow gets from s to t
 No edge has more flow than its capacity
 The flow going into every node (except s and t) is equal to the flow 

going out
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 Ford-Fulkerson is a family of algorithms for finding the 
maximum flow

1. Start with zero flow on all edges
2. Find an augmenting path (increasing flow on forward edges 

and decreasing flow on backwards edges)
3. If you can still find an augmenting path in the residual graph, 

go back to Step 2





 Recall that a bipartite graph is one whose nodes can be 
divided into two disjoint sets X and Y

 Every edge has one end in set X and the other in set Y
 There are no edges from a node inside set X to another node in set X
 There are no edges from a node inside set Y to another in set Y

 Equivalently, a graph is bipartite if and only if it contains no 
odd cycles



 Matching means pairing up nodes in set X with nodes in set Y
 A node can only be in one pair
 A perfect matching is when every node in set X and every 

node in set Y is matched
 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as 

many nodes are matched up as possible
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 Take a bipartite graph G and turn it into a directed graph G'
 Create a source node s and a sink node t
 Connect directed edges from the source to all the nodes in set 

X
 Connect directed edges from all the nodes in set Y to the sink
 Change all the undirected edges from X to Y to directed edges 

from X to Y
 Set the capacities of all edges to 1



 We run the Ford-Fulkerson algorithm to find the maximum 
flow on our new graph

 Since all edges from X to Y have capacity 1, they will either 
have a flow of 1 or of 0

 If they have a flow of 1, they are in the matching
 If they have a flow of 0, they aren't
 The maximum flow value tells us how many nodes are 

matched



 To make the algorithm go faster, we can start with a maximal 
matching

 A maximal matching is not necessarily maximum, but you 
can't add edges to it directly without removing other edges

 In essence, arbitrarily match unmatched nodes until you can't 
anymore

 Then start the process of looking for augmenting paths



1. Come up with a legal, maximal matching
2. Take an augmenting path that starts at an unmatched node 

in X and ends at an unmatched node in Y
3. If there is such a path, switch all the edges along the path 

from being in the matching to being out and vice versa
4. If there is another augmenting path, go back to Step 2







 Exam 3
 After that:
 Sequencing problems
 Partitioning problems
 Graph coloring
 Numerical problems
 Co-NP



 No class Friday!
 Work on Assignment 6
 Study for Exam 3
 In class on Monday

 For next Wednesday, read 8.5, 8.7, 8.8, and 8.9
 Your three-sentence summary should list all of the different NP-

complete problems
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